Pages 559-564

TECHNICAL DEVICE FOR OBTAINING RAMAN SPECTRA OF ULTRATHIN FILMS OF PHOSPHOLIPIDS

A. AURENGO, M. MASSON, R. DUPEYRAT,

Département de Recherches Physiques (Laboratoire associé au CNRS n° 71) Université P. et M. Curie, 4, place Jussieu - 75230 Paris cedex 05 - France

Y. LEVY

Institut d'Optique (Laboratoire associé au CNRS) - 31485 Orsay - France

H. HASMONAY

Laboratoire de Chimie Physique,(Laboratoire associé au CNRS n° 176) Université P. et M. Curie, 11, rue P. et M. Curie-75231 Paris cedex 35-France

J. BARBILLAT

Laboratoire de Spectrochimie Infra-Rouge et Raman, section Lille (laboratoire propre du CNRS) - 59650 Villeneuve d'Asoq - France

Received May 18,1979

ABSTRACT

The association of a sample illumination apparatus for supporting ultra thin films with a microprobe (MOLE) spectral analysis system allowed us to obtain non-resonant Raman spectra of phospholipid films. Films as thin as 75 Å have yielded useful spectra.

INTRODUCTION

To study biological membranes we have developed a Raman spectroscopic technique, the details of which are an extension of our earlier work with thin films (1,2). Takenaka et al. (3) published spectra of absorbing monolayers taking advantage of the resonance Raman effect to attain enhanced signals. Muller et al. (4) using an attenuated total reflection technique (evanescent waves) reported Raman spectra of sample slices about 500 Å thick. In some of these cases, as well as with those involving monolayers adsorbed on metallic electrodes (5,6), the high intensity of observed Raman bands may be due to resonance enhancement. Such is not the case

here. Our method allows the detection of Raman spectra of phospholipid films (75 to 1425 Å thick) by concentrating the energy density of the excitation source in the film, minimizing the detection of signals originating in the support medium and by collecting as much of the Raman signal from the sample film as possible. To do this, a special sample support configuration and illumination system was developed and coupled to a commercially available Raman microprobe (MOLE) apparatus (7).

II - ILLUMINATION

A four media device (fig. 1) was used in which a high refractive index prism of rutile (n = 2.9) was coated first with a layer of silver ($d_2 = 400 \text{ A}$) and then with the sample of interest of thickness d_3 . For this kind of geometry, it is known (2,8) that :

a) with transverse magnetic (TM) polarization of the incident beam and for each value of d_3 , there exists one or more values of the incident angle θ (coupling angle) such that the intensity of the reflected beam is minimal and the electric field in the sample film is maximized at a level much higher than in the incident beam,

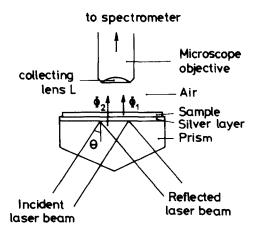


Fig. 1. Experimental device at the level of the incident laser beam and the microscope objective.

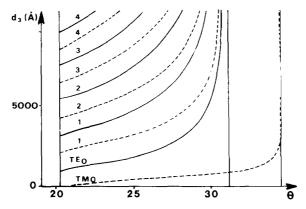


Fig. 2. Coupling angles for to polarization TM and TE versus $\mathrm{d}_{3}(\mathrm{A})$

b) with transverse electric (TE) polarization of the incident beam, it is the same, but there is now a minimum value of d₃ below which propagation of plane light waves in the film is impossible and coupling cannot occur (fig. 2).

A plot of film thickness d_3 vs coupling angle θ is shown in figure 2. For a film of d_3 = 1425 Å and n = 1.5, the possible coupling angles are 22° and 33° for TE and TM excitation respectively. It was previously shown (2) that for TE excitation, the maximum of the electric field in the film would be 21 times that in the incident beam.

With the sample arrangement of figure 1, the Raman scattered light Φ_1 originating in the sample may be overwhelmed by that originating in the prism Φ_2 . The silver layer serves two very useful functions. In addition to its role in the electric field enhancement of the beam in the sample, it attenuates Φ_2 by absorption (\sim 97 %) and reflection but does not affect Φ_1 which originates in the region above the metallic film.

III - OPTIMIZATION OF $\Phi_1/(\Phi_1^- + \Phi_2^-)^{1/2}$

The fluctuations in the total Raman flux $\Phi_{\overline{T}}=\div_1+\phi_2$ obey Poisson statistics with a standard derivation given by $\sqrt{\phi_{\overline{T}}}$. For the Raman signals



Fig. 3. 1/C = $\sqrt{\Phi_{\rm T}}/\Phi_{\rm i}$ as a function fo the numerical aperture for different depolarization ratios.

 ϕ_1 of interest, there is always a contribution from ϕ_2 and in general, $\phi_2 >> \phi_1$. Therefore, the relative error $C = \sqrt{\phi_T}/\phi_1 = \sqrt{\phi_2}/\phi_1$ in measuring ϕ_1 must be minimized. It can be demonstrated (8) that C is a decreasing function of the numerical aperture of the collecting lens L (fig. 1) and the results are shown in figure 3. With an increasing aperture both ϕ_1 and ϕ_2 increase but the marginal rays of ϕ_2 are significantly attenuated because of the longer optical path through the silver film. This is not the case for ϕ_1 . In addition, a large aperture reduces the depth of field and thus contributions to the signal from ϕ_2 . Matching the dimensions of the illuminated image to the optical system of the spectrometer increases ϕ_1 more than $\phi_T^{-1/2}$. Details will be published in due course (9).

IV - EXPERIMENTAL SECTION

Films of various thichnesses (d₃ = 1425, 425, 125 and 75 $\mathring{\rm a}$) of calcium L $\mathring{\rm g}$ γ dipalmitoyl phosphatidate were deposited in (2n + J) layers using a variation (10) of the Langmuir-Blodgett technique on to an evaporated silver film of thickness d₂ = 400 $\mathring{\rm a}$. Light (4880 $\mathring{\rm a}$) from an Argon

ion laser (TM or TE) was used. Using a spherical lens, the illuminated area on the sample was elliptical (50 x 25 μ). Spectra were recorded with two different optical systems. In the first, a Coderg PHO1 spectrophotometer with f/6 light collecting fore-optics and direct current detection was used with a spectral band pass of 10 cm⁻¹. In the second, a microprobe (MOLE, Jobin Yvon) was employed. This is a commercial instrument in which a microscope (magnification = 100, numerical aperture 0.9) is coupled to a double grating spectrophotometer. In our experiment, however, the sample illumination is from below (fig. 1) rather than the more normal axial illumination used in the MOLE. The spectral band pass was 9 cm⁻¹ and a photon counting system was used.

V - RESULTS AND DISCUSSION

Using the Coderg instrument, TM excitation of a sample with $d_3 = 1425$ Å exhibit prominent bands due to C-H stretching vibrations of the phospholipid. In good agreement with theoretical predictions coupling angles were found for both TM and TE excitation. When $d_3 < 1425$ Å, only TM excitation was possible as expected, and furthermore, for such very thin films, spectra were not rigorously reproducible.

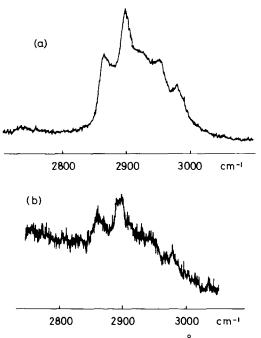


Fig. 4. a) Spectrum of a film thickness: 1425 A - Pol TM. Scan speed: $20 \text{ cm}^{-1}/\text{mm}$ (20 cm⁻¹/cm), counting time: 2 s, entrance slit = 9 cm⁻¹, laser power: 300 mw.

b) Spectrum of a film thickness: 75 \mathring{A} - Po1 TM. Scan speed: $5~\rm cm^{-1}/mm$ (20 cm⁻¹/cm), counting time: 7 s, entrance slit = 9 cm⁻¹, laser power: 70 mw.

In 4 A and B, Raman spectra of films with d_2 = 1425 Å and 75 Å taken with the MOLE are shown (TM excitation). The advantage of this experimental arrangement are clear, for the spectrum of the 75 A film is roughly equivalent to the one obtained with the CODERG instrument with $d_3 = 1425A$. Thus a signal enhancement of about 20 times was realized. Calculations for a point source and the two optical gathering systems suggested that a factor of almost 300 was to be expected. That we do not have a point source is evident and this contributes significantly to the difference. Moreover, optimized coupling of the microscope objective with the sample and the spectrometer has not been completed at this time for our special sample configuration and therefore further improvements are to be anticipated.

Although current results are promising even without requiring resonance signal enhancement processes, it is impossible at the moment to determine accurately the film temperature under excitation conditions and for biological samples, this is an important consideration.

ACKNOWLEDGEMENTS. We are grateful to Miss R. Tierce for her invaluable assistance with many of the experiments and to M. Caillaud for her help in the deposition of the thin films. We are also indebted to M. Delhaye of the University des Sciences et Techniques de Lille and to P. Dhamelincourt for providing us with their MOLE equipment, their help and advice all of which were very necessary.

REFERENCES

- 1. Y. Levy, C. Imbert, J. Cipriani, S. Racine, R. Dupeyrat, Optics communications, (1974), 11,66
- 2. M. Menetrier, R. Dupeyrat, Y. Levy, C. Imbert, Optics Communications (1977) 21, 162
- 3. T. Takenaka, T. Nakanaga, Journal of Physical Chemistry, (1976), 80, 475
- 4. H. Albrecht, G. Muller, M. Schaldach, "Proc. VI Intern. Conf. on Raman Spectroscopy" Bangalore (India) (1978)
- 5. M.R. Philpott, J. Chem. Phys., (1975) 62, 1812 6. F.W. King, P. Van Duyne, G.C. Schatz, J. Chem. Phys., (1978), 69, 4472
- 7. M. Delhaye, P. Dhamelincourt, J. Raman Spect. (1975),3,33
 - P. Dhamelincourt, Thesis, 12/01/79, Université Sciences et Techniques de Lille (France)
- 8. Y. Levy, Nouvelle Revue d'optique Appliquée, (1972), 3, 25
- 9. A. Aurengo, to be published
- 0. H. Hasmonay, M. Caillaud, M. Dupeyrat, Submitted for publication.